Thursday, 19 January 2012

Pin It

Widgets

STATISTICS SYLLABUS POST OF FOREST RANGE OFFICERS


STATISTICS SYLLABUS


Probability:    Random  experiment,  sample  space,  event,  algebra  of  events,  probability  on  a
discrete  sample  space,  basic  theorems  of  probability  and  simple  examples  based  theorem,
conditional,  probability  of  an  event,  independent  events,  Bayer’s  theorem  and  its  application,
discrete  and  continuous  random  variables  and  their distributions,  expectation,  moments,
moment  generating  function,  joint  distribution  of  two  or  more  random  variables,  marginal  and
conditional distributions, independence of random variables, covariance, correlation, coefficient,
distribution of a function of random variables.  Bernouli, binomial, geometric, negative binomial,
hypergeometric,  poisson,  multinomial,  uniform,  beta,  exponential,  gamma,  cauchy,  normal,
longnormal  and  bivariate  normal  distributions,  real life  situations  where  these  distributions
provide  appropriate  models,  Chebyshev’s  inequality,  weak  law  or  large  numbers  and  central
limit  theorem  for  independent  and  identically  distributed  random  variables  with  finite  variance
and their simple applications.

Statistical  Methods:    Concept  of  a  statistical  population  and  a  sample,  types  of  data,
presentation  and  summarization  of  data,  measures  of  central  tendency,  dispersion,  skewness
and kurtosis, measures of association and contingency, correlation, rank correlation, intraclass
correlation,  correlation  ratio,  simple  and  multiple  linear  regression,  multiple  and  partial
correlations (involving three variables only), curve fitting and principle of least squares, concepts
of  random  sample,  parameter  and  statistic,  Z,  X2,  t  and  F  statistics  and  their  properties  and
applications,  distributions  of  sample  range  and  median  (for  continuous  distributions  only),
censored sampling (concept and illustrations).

Statistical  Inference:    Unbiasedness,  consistency,  efficiency,  sufficiency,  completeness,
minimum  variance  unbiased  estimation,  Rao Blackwell  theorem,  Lehmann Scheffe  theorem,
Cramer Rao inequality and minimum variance bound estimator, moments maximum likelihood,
least squares and minimum chisquare methods of estimation, properties of maximum likelihood
and  other  estimators,  idea  of  a  random  interval,  confidence  intervals  for  the  parameters  of
standard distributions, shortest confidence intervals, large sample confidence intervals.  Simple
and composite hypotheses, two kinds of errors, level of significance, size and power of a test,
desirable properties of a good test, most powerful test, Neyman Pearson lemma and its use in
simple  example,  uniformly  most  powerful  test,  likelihood  ratio  test  and  its  properties  and
applications.

Chi square  test,  sign  test,  Wald Wolfowitz  runs  test,  run  test  for  randomness,  median  test,
Wilcoxon test and Wilcoxon Mann Whitney test.

Wal’s  sequential  probability  ratio  test,  OC  and  ASN  functions,  application  to  binomial  and
normal distributions. Loss function, risk function, mini max and Bayes rules.

Sampling Theory and Design of Experiments:  Complete enumeration vs. sampling, need for
sampling, basic concepts in sampling, designing large scale sample surveys, sampling and non
sampling errors, simple random sampling, properties of a good estimator, estimation of sample
size,  stratified  random  sampling,  systematic  sampling  cluster  sampling,  ratio  and  regression
methods of estimation under simple and stratified random sampling, double sampling for ratio
and regression methods of estimation, two stage sampling with equal size first stage units.

Analysis  of  variance  with  equal  number  of  observations  per  cell  in  one,  two  and  three way
classifications,  analysis  of  covariance  in  one  and  two way  classifications,  completely
randomized  design,  randomized  block  design,  latin  square  design,  missing  plot  technique,  2n 
factorial  design,  total  and  partial  confounding,  3^2   factorial  experiments,  split plot  design  and
balanced incomplete block design.







0 comments:

Post a Comment